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ABSTRACT 

The purpose of this thesis is to determine and optimize nominal 
reentry trajectories f o r  the orbiting stage of the Space Transportation 
System (STS ) employing a new differential dynamic programming 
approach. 
center of mass of the vehicle configuration with secondary attention 
given to stability and control which is coiicerned with the vehicle at- 
titude motions about this center of mass. 

The trajectories are primarily based on the motion of the 

The STS reentry is divided into three phases: the hypersonic 
reentry; the transition to cruise; and the powered flight cruise, ap- 
proach, and landing. Principal attention is directed at the first two 
phases in an integrated manner. The Apollo reentry system serves 
as a guide to the hypersonic phase analysis. The difference introduces 
itself in the form of a transonic transition to cruise, where the 
hypersonic, linear assumptions no longer remain vaiid. In this low 
Mach number region, non-linearities and higher order  te rms  may not 
be neglected, and must be reinstated into the dynamic model and the 
equations of motion. Aerodynamic control is employed in the form of 
a lift vector rolling essentially about the wind axis or velocity vector. 
Fundamental constraints include a maximum acceleration, total heat 
accumulation and heat rate limitations, and the terminal accuracy 
desired fo r  the start of the powered flight cruise. 
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New second-order and first-order differential dynamic pro- 
gramming techniques J-2 fo r  determining optimal control with wider 
application than existing second-variation and second-order methods 
a r e  applied. Advantages of such an approach include: lessening the 
restriction of maintaining a globally positive definite inverse second 
partial derivative matrix of the Hamiltonian with respect to the con- 
trol  vector, Huu , so that a larger class of problems may be handled 
adequately; rafjia convergence of non-linear problems ; and stability 
of integrations along nominal non-optimal trajectories. 

The object is to apply this new technique to the STS reentry 

But more important than optimality is 

control problem. 
tories are influenced more by optimization procedures than by 
operational considerations. 
the methodology of design which optimal control provides. 
attention can then be devoted to the developing trends, perhaps with 
respect to  some nominal reference. The changeability of the present 
NASA STS strawman configuration coupled with the sparsity of aero- 
dynamic data in the transonic region makes such a generalized 
approach very feasible and desirable, With a prudent choice of state 
and control variables, the sensitivity parameters should reveal them - 
selves, leading to the desired guidance law. The emphasis is to show 
the validity and worthwhileness of such a flexible approach in deter- 
mining optimal reentry trajectories. 

The determination and selection of nominal trajec - 

Much 

I 
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NOTATION 

a 

C 

cD 

cL 

'L max 

d. 

D 

dt 

f - 

F 

g 

g's 

Difference between optimal cost Jo[z(t), t] using 
uof.r) = E(r) + 6u0(,c) and nominal cost 5 [z(t), t] using z(r), 

- 
- - - - 
7 6 rt, tfl 

Critical value for  AJ / I a[Z(t,), - tl] I i n  nearness test 

. .  
Aerodynamic drag coefficient 

Vertical trajectory plane component of aerodynamic lift 
coefficient 

Aerodynamic l i f t  coefficient 

Reference distance from vehicle nose to critical stagnation 
points in f t .  ' 

Drage force in lbs. 

Time step duration in sec. 

Time derivative of the state vector equivalent on right hand 
side of' state equation 

Terminal cost or  performance index 

Earth gravitational acceleration equal to 32.2 ft /sec.  

Vehicle acceleration, in units of g 
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. 

GF1 

GF2 

GF3 

h 

H 

hS 

J 

L 

L 

max L 

L/D 

Vehicle configuration factor 

Vehicle wing configuration geometry factor 

Vehicle wing configuration geometry factor 

Local vertical earth altitude in ft. 

Hamiltonian 

Atmospheric scale height utilized in calculating the 
exponentially varying atmospheric density, in ft. 

Total cost function or  performance index 

Accrued cost function or  performance index 

Vertical trajectory plane component of lift force in lbs. 

Lift force in lbs. 

Vertical trajectory plane component of lift-to-drag ratio 

LID, L/DImax Lift-to-drag ratios 

m Vehicle mass in slugs 

M Mach number 

2 q Dynamic pressure in slugs/ft/sec * 

2 Total accumulated convective heating i n  BT,U/ ft 9, 

2 Convective heat rate in BTU/ft /see. 
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th r The r- value of tL encountered in attempting to  satisfy 
the nearness cri teria 

R 

RN 

S 

t 

fb 

Magnitude of earth centered position vector equivalent to 
sum of local vertical altitude and some representative 
Earth radius in ft. 

Representative Earth radius in ft. 

Representative vehicle nose or  leading edge radius in ft. 

Vehicle reference -fling area 

Time in sec. 

Time of instability in matrix Riccati reverse differential 
equation, in sec. 

Time at which the trajectory first  violates a necessary 
condition of .optimality, or when I a I first exceeds q, in 
sec. 

Terminal time in sec. 

%f€ 

tf 

Initial time in sec. 

th r- value of tl encountered in attempting to satisfy the 
nearness criteria, in sec. 

0, r t 

Time at which nominal control is replaced by new optimal 
control, o r  the earliest time when the nearness cri teria 
is satisfied, in see. 
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U - 
V 

t2 

v, 

W 

L o . )  
W 

X - 

X r 

Y 

rl 

P 

Beginning of time interval where the nominal trajectory 
is the optimal trajectory over It,, t,], but not optimal 

Control vector 

Relative velocity in ft/sec 

Free s t ream velocity 

Vehicle weight in lbs. 

Quadratic penalty weighting fact o r  for sub scripted 
quantity 

State vector 

Down range distance on Earth surface in €t. or n. m. 

Vehicle angle of attack in radians 

Optimal linear feedback controller maintaining the 
necessary condition of optimality 

Vehicle flight path angle positive upward, in radians 

Small positive tolerance quantity €or I a1 in determining a 
suitable 5 

3 Local Earth atmospheric density in slugs/ft 

3 Local Earth atmospheric density at sea level in slugslft 

Standard deviation of a distribution 
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c 

7 Dummy variable for time in sec. 

cp Vehicle roll angle in radians 

dl Terminal boundary condition 

Denotes an acceptable tolerance or  variance in the 2 
o(..*) 

. subscripted quantity 

At A small time interval in sec. 

(. ..) Under score denotes a column vector - 
(3 Overbar denotes a nominal quantity 

. 
(...) Dot notation indicates total derivative with respect to time 

(.JO Superscript o denotes optimal 

. f  
(. ..) Superscript denotes determination of the quantity by 

satisfying the necessary condition of optimality 

min 
(. . . ) {. , . (. . . ). . , ] Denotes minimization of quantity in braces with 

respect to parenthesized quantity 

Denotes matrix o r  vector transposed T 
(... 

c 1-1 Denotes matrix inverse 

IL..,I Denotes absolute value of quantity 

6 ( . * . )  Denotes a deviation in the quantity from its reference value 

6 ( .  . . I  Denotes delta penalty terms 
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N 

5 ( .  0 .  ) Denotes delta penalty te rms  

4(. * . ) Denotes a quantity difference 

(. )Imax Denotes a maximum desired quantity threshold value for 
cost penalization 

( *  ' )]desired Denotes desired quantity range threshold values €or cost 
penalization 

( 0  ..) c... 31 

( *  . . -- 

Denotes the quantity in braces evaluated at the subscripted 
value 

Subscript 0 denotes an initial time quantity 

Subscript f denotes a terminal time quantity 

Denotes partial differentiation with respect to a scalar s 

Denotes partial differentiation with respect to a vector s 
to yield a row vector 

I 

Denotes partial differentiation of a column vector with 
respect to a vector s to yield a matrix of dimension: 
(dimension OP parenthesized vector) x (dimension of s) 

- 
- 

Denotes partial differentiation with respect to column 
vectors r and s to yield a matrix of dimension: (dimension 
of r) x (dimension of s) 

- - 
- - 
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CHAPTER I 

INTRODUCTION 

In recent years, much attention has been devoted to the problem 
of guiding a lifting -body reentry vehicle through an earth atmospheric 
reentry to a desired target Safely. 
subject to the total heat accumulation and heat rate limitations of the 
spacecraft shielding material, and the maximum acceleration and 
load factor limitations of the crew and vehicle structure. It was  also 
highly desirable to be able to direct the spacecraft to within a-certain 
radius of a specified target. 

This had to be accomplished 

These constraints have been examined both individually and 
For a vehicle reentering the earth's atmosphere at a collectively. 

given velocity, there is a certain amount of peak heating rate and 
maximum acceleration that is intrinsic to a system possessing such 
amounts of kinetic energy. Parametric studies can only attempt to 
reduce these by changing their  altitude, time, and to some extent 
duration of occurence. It seemed desirable to  reduce the peak heating 
rate by maintaining a higher altitude where the atmosphere is less 
dense, but however prolonging the portion of the entry and increasing 
the total amount of heat accumulated by the vehicle. It w a s  found to 
be far more profitable to  descend lower, incurring higher peak heat- 
ing rates, but decreasing the duration and thus the total heat accumu- 
lated. 
peak heating rates quite closely. This again is due to the kinetic 
energy of the vehicle. 

Maximum load factor and acceleration patterned those of the 

17 



Aerodynamic control of the lifting-body reentry vehicle is 
employed by proper directioning of the lift vector. 
entry, experience with the Mercury spacecraft indicated a state-of - 
the-art landing point accuracy of twenty to forty nautical miles ( lo).  
For entry using low L/D ( less than 0.5 ) , experience with the Gemini 
spacecraft indicated a state -of -the-art landing point accuracy of ap- 
proximately four nautical miles ( lo),  where the navigation e r r o r  is 
about three nautical miles ( Results of the Apollo flights to 
date indicate even smaller miss  d i ~ t a n c e s ~ - ~ ,  with the Apollo 12 
flight missing by about one nautical 
about 0 . 3  , with the maximum amount of lift limited by the vehicle 
t r im angle of attack. 

For ballistic r e -  

The L/D for Apollo w a s  

In the case of the STS orbiter o r  shuttle vehicle, the maximum 
capable amount of lift is to be determined by the angle of attack history. 
The vehicle configuration is similar to a conventional airplane, af - 
fording a potential fo r  relatively low development costs. The basic 
shuttle concept is depicted in Fig. 1.1, taken from the Manned Space- 
craft Center (MSC ) Shuttle Status briefingsM-'. Both the booster and 
orbiter stages employ airplane type practices. The primary concern 
of this thesis is with the reentry of the orbiter stage. 

Because of the critical transonic transition to cruise maneuver, 
the hypersonic linear analysis is no longer valid f o r  the whole duration 
of the orbiter reentry as it was  in the Apollo reentries. Non-linearities 
and higher order  terms can no longer be neglected. 
complex situation, the problem of determining optimal nominal refer - 
ence trajectories demands a more efficient optimization procedure. 
The lifting-body atmospheric reentry formulation is already quite 
complex, even with the linear hypotheses. 
much of the vehicle aerodynamic characteristics a r e  unknown due to 
the non-existence of a true test  model, and non-linear as wel l ,  the 
problem is further complicated. 

For  this  now more 

Coupled with the fact that 
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The utilization of a second -order o r  second -variation functional 
optimization technique seems the logical solution, and there have been 
several  of these techniques which have been applied to the non-linear 
reentry problem, However, there arises the question as to the worth- 
whileness of such an approach, basically from an efficiency point of 
view. 
of success, and problems arose with the instability of integrations, 
the rate of convergence to the desired solution in terms of the number 
of iterations and the computation time required, and even the applica- 
bility of certain of these techniques. There emerged, from The notion 
of differential dynamic programming, new second-order and first- 
order techniques f o r  determining optimal control with wider application 
than existing second-order and second-variation methods . Using 
this method, the fact that the inverse second partial derivative matrix 
of the Hamiltonian wi th  respect to the control vector, HUU, was  not 
required to be globally positive definite allowed a 1argeFFlass of problems 
to  be considered. The new step-size adjustment routine facilitated 
the rapid convergence of non-linear problems and ensured the stability 
of the backward integration along nominal non-optimal trajectories. 
The variables of the backward integration are themselves the first and 
second order  influence functions, and lead to  the desired perturbation 
guidance law. 

The non-linear reentry problem was  met with varying degrees 

5-2 

The object is to  show the applicability of this new approach to 
the non-linear STS reentry problem. The main concern is more with 
determining trends and influence factors than with solving f o r  the op- 
timal solution, which optimal solution depends on the form of the cost 
functional o r  performance index and the weighting of the state and con- 
t ro l  parameters, which in turn depend upon the information sought. 
Numerical studies further the understanding of maneuvers, but the 
number and variety of boundary conditions and constraints preclude a 
very effective use of an experimental "open loop" approach to optimal 
nominal trajectory determination. Optimal control techniques reduce 
the guess work affording a consistent framework within which to gen- 
erate and evaluate control strategies s-1 
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CHAPTER I1 

THE REENTRY FORMULATION 

2.1 Reentry - 
The atmospheric reentry analysis is primarily concerned with 

the motion of the center of mass of a lifting-body vehicle. 
motions of the vehicle about its center of m'ass a r e  usually not incor- 
porated directly into the formulation, but instead introduced through 
penalty functions or other means. The reentry phase begins at an al- 
titude of 400,000 feet above the surface of the Earth, although the 
altitude at  which the aerodynamic forces become significant, depending 
on the velocity and geometric characteristics of the vehicle, occurs at 
about 300,000 feet  above the Earth 's  surface. 

The attitude 

For the purposes of trajectory determination, the Earth is 
modelled as a non-rotating homogeneous sphere, surrounded by an ex- 
ponentially varying dense atmosphere. The only aerodynamic forces 
taken into account a r e  the lift and drag of the vehicle. The other forces 
considered are due to the gravitational attraction of the Earth and the 
centripetal acceleration of the vehicle. 

For the heating model, only convective heating is taken into 
account. Radiative heating may be neglected because the vehicle velo- 
city is less than 30,000 feet per  second. The critical heating locations 
for such a vehicle configuration are at the nose stagnation point, the 
wing leading edge, the aft wing region, and the three dimensional apex 
area behind the nose stagnation region, as illustrated in Fig. 2 . 1 .  1. 

The skin temperature at any point of these regions can be calculated 
by means of heat - balance equations. 

21 



NOSE STAGNATION POINT 1 

Figure 2. 1. 1 Critical Heating Locations on a Reentry Vehicle 
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. 
2.2 Equations of Motion - 

Consider the two -dimensional trajectory planar motion of a 
lifting-body reentry vehicle as depicted in Fig. 2.2.1. The dynamic 
equations of motion of the center of mass of the vehicle system con- 
figuration along and orthogonal to the velocity vector in local earth 
coordinates are: 

(2.2.1) dv V' m - =  - D - m g s i n y  + m - s h y  
d t  R 

2 

dt R 
m-(vy) d = L - mg cos y + m -  V COS 7 ( 2 . 2 . 2 )  

The remaining equations of motion are the kinematic relationships 
describing the motion of the vehicle center of mass: 

dxr R e  m - = mv cos y - 
d t  R 

(2.2.3) 

. .  

dh 

d t  
m -  = m v s i n y  ( 2.2.4) 

Assuming that the velocity is essentially constant over the duration of 
an integration time step, and introducing the following aerodynamic 
relationships, 

1 2  D = - p v  SCD 
2 

1 2  
2 

L = - p v  S C L  

(2.2.5) 

( 2 . 2 . 6 )  

where L represents the trajectory plane vertical component of the 
l i f t  force, along with the relationship: 

R = R e t h  (2.2.7 1 

w e  rewrite the equations of motion in the particular form: 
23 



local ho ri zon ta I 

downrange 
reference 

\ 

\ 

local vertical 

vehicle & v '  

h 

R 

Figure 2. 2 . 1  Vehicle Trajectory Coordinate Geometry 
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( 2 . 2 . 8  

2 
V 

g s in  Y -- sin y ( 2 . 2 . 9 )  
I 1 ZCDg v = - - p v  - -  

2 w/ s ( R,+h 1 

( 2 . 2 . 1 0 )  
V cos y 

+ = - p v -  1 cLg - - c o s y  g + -  
2 w/s v ( R,+h 1 

i = v s i n y  ( 2 . 2 . 1 1  ) 

Equations ( 2 . 2 . 8 )  - ( 2 . 2 . 1 1  ) a r e  the basic equations of motion f o r  the 
lifting-body reentry problem in local coordinates, where xr represents 
the downrange, v is the relative velocity, y the flight path angle mea- 
sured positive upward from the local horizontal, and h the local vertical 
altitude. S is the representative vehicle wing area, p the local density 
of the atmosphere, and Re  some representative radius of the Earth. 

There a r e  many ways of representing these equations of motion, 
each with its particular advantages and peculiarities. The geometry of 
the situation suggests that spherical o r  polar coordinates are the more 
natural. ChapmanC-' extends this concept with the introduction of a 
special Z transformation variable, essentially to reduce the dynamic 
equations of motion to a single expression. From a purely mathematical 
point of view, this is aesthetically pleasing, and the computations a r e  
considerably simplified by the use of acceleration ( density-altitude ) 
inputs, However, the approximations assumed in that formulation are 
contrary to this author's intentions to include all the important terms 
in the dynamic equations of motion for  this particular non-linear atmos - 
pheric reentry problem formulation. Also, the form of Eqs. ( 2.2 .8  ) -  

(2 .2 .11)  is simpler to understand, and the physical significance of 
each quantity is much more readily identifiable. Here, mathematical 
and computational efficiency have been sacrificed in favor of compre- 
hensibility . 25 



The convective heat rate equations or heat flux equations f o r  
the four critical heating areas are: 

3. 15 
( $ ) O o 5 (  ( 2 . 2 . 1 2  

2 6 , 0 0 0  ) 
for the nose stagnation region, 

. 3 .15  
8,800-(2) O o 5 (  v ) GF1 ( 2 . 2 . 1 3 )  

26 ,000  = - P o  

for the apex region, 

0 . 5  3. 15 
( 2 . 2 . 1 4 )  GF2 

12 ,400  

for the wing leading edge, and 

( 2 . 2 . 1 5 )  - 8,800 " - (6) 26 ,000  

1' 
fo r  the aft wing region, where d is the distance from the nose, and GF 
GF2, and GF3 are a vehicle configuration factor and geometry factors 
for the particular vehicle wing configuration. R is the representative 
nose or leading edge radius, while p 

density. 

N 
is the sea level atmospheric 0 

The total amount of convective heat accumulated is simply the 
integral of the convective heat rate over the total time interval of the 
reentry : 

The acceleration in g 's  assumes an especially simple form: 

26 



or in another more useful form; 

where q is the dynamic pressure represented by: 

1 2  
q = -  P V  ( 2 . 2 . 1 9 )  

2 

C and Lmax a r e  the maximum coefficient of lift and maximum lift 

force for  a particular angle of attack, respectively. These a r e  related 
to their trajectory plane vertical components by the following expressions: 

Lmax 

CL = c cos (b 
Lmax 

L = Lmax cos (#j 

( 2.2.20 

( 2  .2 .21 )  

Here, (b is the roll angle or bank angle about the velocity vector. A 
perhaps more illuminating expression is of the form: 

where (L/D Imax is determined by the angle of attack, cy. 

( 2.2.22 ) 
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- 2.3 The Apollo Hypersonic Reentry Concept 

Selecting the proven M-5 Apollo reentry concept as a starting 
point, w e  recall that fo r  its equations of motion, Eqs. ( 2 . 2 . 8  ) - 
( 2 . 2 . 1 1  ) w e r e  employed assuming a small flight path angle, y , and 
neglecting the component of centripetal acceleration along the velocity 
vector L-4D M-4. In the case of the Apollo earth orbital reentries, the 
initial velocity at entry interface ( h  = 400,000 ft. ) was close to  
26,000 fps. Thus the portion of the Apollo reentry that pertains to the 
STS orbital reentry problem with an initial reentry velocity near 
26,000 fps is essentially the final phase which is entered into on the 
initial Apollo entry at velocities less than 27,000 fps. G-l ,  and where 
the closed loop guidance law is a function of perturbations about a pre- 
stored nominal reference trajectory wi th  velocity as the independent 
variable, 

The method of  adjoint^^-^' L-2 w a s  utilized to generate such 
a f i n a l  phase reference trajectory f o r  the Apollo reentry, with the ad- 
joint variables becoming the perturbation feedback gains in the control 
law. The control is expressible as a commanded L/D which specifies 
the commanded roll  angle. The out of plane component of lift is essen- 
tially nulled by a lateral  logic scheme whereby the lift vector is switched 
from one side of the trajectory plane to the other. 
trajectory w a s  also chosen to match a desired down-range so  that by 
following it the terminal e r r o r  in range could be nulled, while  relying 
on the lateral  logic to  zero the e r r o r  in track. 

This reference 

The selection of the Apollo nominal reference reentry trajectory 
was  greatly influenced by operational considerations. The employment 
of a reference trajectory w a s  made to render the overall reentry guid- 
ance and navigation system less sensitive to large input e r ro r s ,  and 
thus less susceptible to blunderous decisions on the part of the steering 
logic. 
reference trajectory is in the reduction of its capability and flexibility 
to adapt to markedly off design conditions. Here maximum flexibility 
has been sacrificed in favor of computational simplicity and efficiency. 

Of course, the obvious disadvantage of using a pre-computed 
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- 2.4 The STS Orbiter Reentry Concept 

The deorbit burn maneuver for  the STS oroiter is designed 
nominally to occur f rom a 55 degree inclination, 270 nautical mile 
circular orbit. The vehicle then enters the atmosphere at a proposed 
60 degree angle of attack. The reasons f o r  this high angle of attack 
are as follows. One major benefit is a reduction in  the thermal pro- 
tection system required. High angle of attack reentry in the region of 
peak heating and maximum acceleration greatly reduces the heat pro- 
tection requirements f o r  the lower surfaces of the body. Being in the 
proximity of the maximum lift coefficient yields low reentry load factors 
and low peak heating rates. Such a high drag configuration results in 
a shorter reentry time duration leading to a lower total heat accumula- 
tion. 
attack blunt body reentry from orbit. 

Vehicle stability considerations also favor such a high angle of 

The equations of motion a r e  as indicated in Eqs. ( 2 . 2 . 8 )  - 
( 2 . 2 .  ll), with all of the te rms  retained. 
trajectory plane or vertical lift o r  L/D. 
both the angle of attack which determines the maximum capable amount 
of lift, and the roll angle which determines the trajectory plane component 
of this available lift. The redundancy or overlap here involves a trade- 
off which is influenced by vehicle configuration stability considerations. 
One method of eliminating this apparent redundancy is to consider the 
in-plane vertical lift as  the principal control variable. However an 
additional parameter is required in order to evaluate the total acceler- 
ation. 
angle are also natural control quantities for  such a conventional airplane 
type vehicle as the STS orbiter. 

The actual control is the 
But these a re  functions of 

This is the roll angle. The angle of attack and roll  or Dank 

The investigation for the STS configuration is similar to the 
final phase analysis of Apollo, employing a perturbation scheme about 
a reference nominal trajectory. \The difference lies in the fact that not 
only w i l l  first order  perturbations be included in the control low, but 
cross  coupled te rms  and second order terms w i l l  be taken into account 
depending on the values of their  influence functions. These influence 
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functions are direct results of the optimization process that yields the 
optimal nominal reference trajectories. A cost functional o r  perform- 
ance index is fashioned to include quadratic penalty te rms  for  heat and 
load limitations and terminal inaccuracies. The object is to reduce 
this cost functional with respect to the control variables, angle of at- 
tack and roll angle. Stability considerations may be introduced either 
in the form of penalty functions fo r  activity in unstable regions (soft 
constraints ) or as hard constraints which are not t o  be violated. 
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CHAPTER III 

A DIFFERENTIAL DYNAMIC PROGRAMMING APPROACH 

3.1 Differential - Dynamic Programming - 
For  a dynamic system’described by the non-linear ordinary 

differential equations or system state equations of the form 

with 

the criterion of optimality is the minimization of the cost functional or 
performance index 

(3.1.3) 

where L [x - ( t  ), - u ( t ), t] can be thought of as the accrued cost along 
the trajectory from time to to tf, and F[z(tf), tf] as the terminal 
cost. Both a r e  sealar  functions of the indicated variables. 

Generalizing to any arbitrary starting point - x (  t ) ,  and proceed- 
ing optimally to a‘terminal hypersurface defined by: 

[$tf). tf] = 0 (3.1.4) 
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in the manner of Bryson and HoB-l, the unique optimal value of the 
performance index is the optimal return function 

Jo = Jo[z(t), t] (3.1.5) 

o r  

L 

with the boundary condition 

(3.1.7) 

on the hypersurface 4 x ( t  ), t = 0. The superscript o denotes optimal. [- 3 
To derive the partial differential equation satisfied by the opti- 

mal return function, assume that Jo - ( t  ), exists, is continuous, 
and possesses continuous first and second partial derivatives at  the 
points of interest. If the starting point is x ( t ) ,  - employment of a non- 
optimal control u - ( t ), over a small time interval At  moves the system 
to another point described by 

at t ime t + At. 
function is written to first order 

Utilizing optimal control from this point on, the return 
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Since a non-optimal control is employed over the time interval At, it 
is t rue that 

(3.1.10) 

If u - ( t  ) is chosen to minimize the right hand side of Eq. ( 3, 1. 10)  as 
given in Eq. ( 3 . 1 .  9), w e  obtain 

Expansion in a Taylor se r ies  about x ( t )  - and t leads to 

Taking the te rms  which do not depend explicitly on - u ( t )  out of the braces 
and letting At approach zero, we obtain 

After defining the Hamiltonian 



we can w r i t e  the Hamilton- Jacobi-Bellman partial differential equation 
as follows : 

along with 

- -  aJo = H o ~ ( t ) ,  e, t] 
a t  a s  

the boundary condition of Eq. ( 3.1.7 ), where 

( 3.1.15 

Equation ( 3.1. 16 ) yields the u ( t  ) = uo ( t  ) which minimizes the Ham- 
ilt o nian 

- - 

- J  c -  
aJo and t fixed. This is ax' in the global sense, while holding x ( t  ) , 

equivalent to the Minimum Principle, In the formulation, the quanti- 
ties 

- - 

aJo a J0 - and - 
a x  - a t  

are understood to be evaluated at[xo (t), t] - 
The quantity which we are seeking to determine is the optimal 

control histomy uo - ( t  1, t E Bo, $1. Applying a nominal control ii( - t ), - 

t 
conditions of Eq. ( 3.1.2 ), and integrating yields a nominal state his - 
tory Z ( t  ), t E Eo, tf 1. Equation ( 3. 1. 3 ) is utilized to calculate the 
nominal cost, J (3, to), f o r  this nominal trajectory. The nominal 
histories include the first initial estimate and all the subsequent tra- 
jectories generated and updated by the state equations. Each iterative 
updating procedure yields a nominal trajectory that- approaches closer 
to  the optimum. 
solution to within a prescribed tolerance. If perturbations of the state 
and control variables a r e  introduced about the nominal state and control 
histories in the manner described by Jacobson's paperJ-2 according to 

Eo. tf] , to the system differential Eq. ( 3.1. 1 ) subject to the initial 

- - 

The final nominal updating should produce the optimal 
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x( t )  = Z ( t )  - + 6 - x ( t )  

L p )  = i i ( t )  - + 6 - u ( t )  

( 3.1.17 ) 

( 3.1.18 ) 

where 6x - ( t  ) and du - ( t  ) are not necessarily small  quantities, the system 
state equations, the cost functional, and the Hamilton-Jacobi-Bellman 
equation are exactly represented by: 

with 

and 

( 3.1.22 ) 
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The nominal trajectory is now the reference trajectory about which the 
perturbations a r e  taken. 

If the optimal cost functional is sufficiently smooth to permit a 
power series expansion in 6x ( t ) about x ( t  ), and the difference between 
the optimal cost functional and the nominal cost functional is expressed 
as 

- 

where the optimal cost functional Jo *- ( t  ), t] results from employing 
the optimal control 

and the nominal cost functional TE( t ) ,  t] obtains by using the nominal 
control 

F 1 

the Hamilton-Jacobi-Bellman equation as  expressed by Eq. (3.1.22 ) 

may be rewritten in the following form: 

and Jx are all evaluated at [z( - t ) ,  t]. A more detailed derivation 
-- ITX - 

is presented in Appendix A, 
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Equation ( 3 . 1 . 2 6  ) is a good approximation only fo r  small values 
of dx( t )  because of the truncation of the higher order terms in d x  - ( t ) .  
Since dx - (to ) = 0, the bx - ( t  ) in the interval Eo, tf] is due solely to the 
bu - ( t ) acting through the perturbed state Eq. ( 3 - 1 . 1 9  )- The superscript 
o has also been eliminated, as the modelling of the cost functional 
locally by an approximate second-order expansion requires a sufficiently 
small  bx (t) .  
priately small  values for 6x - ( t  1 to  allow for optimality to a specified 
tolerance, Therefore, should any 6x - ( t  ) be allowed, the superscript 
notation denoting true optimality starting from the state given by Eq. 
( 3.1.17 ) , x - ( t  ) + d x  - ( t ), would not be completely justifiable. 
of the Hamilton-Jacobi-Bellman Eq. ( 3 .1 .26  ) can now be utilized to 
determine optimal control histories - uo ( t  ),tt- [to, I- tf] , by successively 
improving the current nominal control histories - u ( t ), t, t E [to, tf]. 

6u( t )  is selected in such a way as to  insure only appro- - - 

The form 
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3.2 A New Second-Order Algorithm For Determining Optimal 
Control For Unconstrained ProblemsJ 

- - 

The new second-order differential dynamic programming ap- 
proach by JacobsonJ-2 is another version of the backward sweep method, 
One important point is worthy of emphasis. The restriction of main- 
taining a globally positive definite inverse second partial derivative 
matrix of the Hamiltonian with respect to the control is lessened by first 

minimizing H x ( t  ), u ( t ), J t] in the control space to  yield an im- - x5 
$- proved minimizing control u - ( t ) .  All  quantities a r e  then evaluated at 

5 ( t ) .  Clearly, requiring HU to be positive definite f o r  this im- 
proved control is much less confining than demanding global con- 
vexity of the Hamiltonian throughout the control space. The difficulties 
due to nonconvex nominal solutions that occur with the backward sweep 
method are thus averted. 

E- 
* 

-- 

A wel l  known condition of optimality is that 

Perturbations in the state and control a r e  then introduced about x ( t  ) 
and u ( t )  in order to obtain a linear feedback relationship between 
6x( - t )  and 6u - ( t  )?, while maintaining the necessary condition of opti- 
mality. 

- 9 
- 

Returning to the Hamiltonian-Jacobi-Bellman Eq. ( 3.1.26 ), we 
note that it is valid locally in the state space due to small  6x ( t ), but 
globally valid in the control space. Setting 6x ( t ) to zero for  the moment, 
we may realize the required improved minimizing control by minimiz- 
ing H k( t ), E( t ), Jx, t] in the control space to obtain 

- 
- 

- 

.I. 

' 6u( t )  now referenced about u"*( t ) ,  and not about z ( t )  as in Eq. (3.1.18). - - - 
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Upon reintroducing 6x - ( t  ) in Eq. ( 3.1.26 ), minimality of the right hand 
side of the Hamilton-Jacobi-Bellman equation is maintained by choos - 
ing a suitable du ( t ), but referenced about uJ6 ( t  ) rather than about E ( t ). 
The s ize  of 6u ( t )  must be limited so that it does not produce large 
values f o r  bx ( t  ) *  

expansion of the performance idex as mentioned previously, 
Hamilton-Jacobi-Bellman equation may now be expressed as: 

- - - 
- 

This is to  insure the validi-ty of the second-order - 
The 

where the Hamiltonian is as defined in Eq, ( 3.1.14 ). 

The following necessary optimality condition 

( 3 . 2 . 3 )  

is true, since ug: - ( t )  w a s  chosen to minimize H, 
hand side of Eq. ( 3.2-2 ) about x - ( t  ) and ug: - ( t  ) according to Eq. ( 3.1.17 ), 

Expanding the right 

and 

u ( t )  - = - u * ( t )  f a u ( t )  - 

and differentiating the result with respect to 6u ( t )  and employing 
Eq, (3.2, 3), w e  then assume that 6x(  t )  is sufficiently small  to permit 

- 
- 
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equating the coefficient of the first order  term in 6x( - t )  to zero (second- 
order terms in 6x ( t )  for  the Hamiltonian if 6x ( t )  and 6u - ( t  ) are of the 
same order) ,  

- - 
This yields the optimal linear feedback controller 

which maintains the necessary condition of optimality for small  6x ( t  ): 

The t e rm in Eq. ( 3 . 2 . 6  ) which is chosen to minimize the expanded ver-  
sion of the right hand side of Eq. ( 3 . 2 . 2  ) is found to be 

-1 

Note that all quantities are to be evaluated at E( t 1, 
otherwise specified. ’ Upon further substitution and rearrangement of 
the expanded version of the right hand side of the Hamilton-Jacobi- 
Bellman Eq. ( 3 . 2 . 2  ), and then equating similar powers of 6x - ( t )  with 
the right hand side of Eq. ( 3 .2 .2  ) *  we find that, for  sufficiently small  
values of 6x ( t  ), - - 

aJ aa - - - - - -  
a t  a t  

a = H x + J  f - - ( Jx) x x  - - -- a t  - 

( 3 . 2 . 1 1  1 -1 



where all terms a r e  to be evaluated at t ), u* ( t  ), t] . 
Defining full differentials as explained in Appendix B, w e  w r i t e  

the required reverse differential equations: 

. 
1- -l 

= H x +  J (-f - f  F(t) ,  E ( t ) ,  t ) I x x  - ,_ I  - - - -- - JX - ( 3.2.13 1 

T 
( H U x  + Jxx)  (3.2.14) 

where all quantities are to be evaluated at [E( t ), u* ( t ), unless - 
otherwise specified. The dot notation implies ful l  differentiation of the 
indicated quantities with respect to time, Further details a r e  to be  
found in Appendix Bo Equations ( 3.2.12 ) - ( 3.2.14) a re  the reverse  
differential equations to be integrated backwards from the terminal t ime 
tf, subject t o  the following terminal boundary conditions: 

a ( t f )  = 0 

P -T 
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These boundary conditions a re  derived in part f rom the fact that 

Thus the new control to be applied to the system state equations is ex- 
pressible in either the form 

or 

over the time interval [tO t f i  
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3.3 A New First-Order Algorithm F o r  Unconstrained Problems - 
A special case of the second-order methodJ-2 expands the per- 

formance index o r  cost functional only to first order: 

Thus, the following reverse differential equations a r e  obtained: 

. 
( 3.3.2 1 1 -a = H - H 

c 

(3 .3.3)  

where all quantities a re  again evaluated at 
otherwise specified. 

Equations ( 3,3.2 ) and ( 3.3.3 ) are subject to the terminal bound- 
ary conditions 

a ( t f )  = 0 

The new control is then found to  be 

u ( t )  - = - u * ( t )  
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( 3.3.5) 

( 3.3.6 1 



J -2 3.4 A New Step Size Adjustment Method - 
The 6x ( t  ) generated on the forward state integrations by the new - 

improved minimizing control variable must be small  enough fo r  the 
second-order expansions to be valid. To insure this, merely scaling 
6u ( t )  down by a multiplicative factor E, where 0 < E  < 1, is not per-  
missible, since the new improved minimizing control u* ( t  ) as expressed 
in Eq. ( 3.2.1 ) is already embedded in the reverse differential Eq. 
( 3.2.12 ) - ( 3.2.14 ). 
control space is not required of H precludes such a linear interpolation 
be tweenu( t )  and uy’(t) = u ( t )  + 6 u I ( t ) .  

* 
- - 

- 

Furthermore, the fact that global convexity in the 

- 
- - - - 

If we substitute the new control of Eq. (3.2.21) and Eq. (3.1.17) 
into the dynamic system differential Eq. ( 3, 1.1 ), w e  obtain 

where 

As before, the 6x - ( t  ) generated by Eq. ( 3.4.1 ) is due only to 6u* - ( t  ) 
so that 6x - ( to)  = 0. An inappropriately large 6x - ( t  ) indicates that - u ( t  ) 
is not the optimal control which we are seeking, to  a certain tolerance. 

XC 

One method of constraining the size of 6x - ( t  ) is to  restrict the 
time interval over which Eq. ( 3.4. 1 ) may be integrated. 
state history - ?( t ) is followed from to to tl, where tl €[to, tf], then 

6 x ( t )  - = 0 f o r  t E [to, tl] . Integrating Eq. ( 3.4. 1) over a short enough 
time interval t 1, tf] generates a sufficiently small  6x - ( t ) to maintain 
the validity o This is t rue f o r  any value 
of 6u* ( t  ). We consider 6x - ( t  ) to be sufficiently small  enough provided 

If the nominal 

he second-order expansions. 

that the predicted improvement in cost over the time interval 
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('3.4.3) 

* * 
employing the c o n t r o l u ( t )  = u, ( t )  + au( t )  = u ( t )  + f l  ( t )  a x ( t ) ,  
t E [tl. tf] , is sufficiently near the actual improvement in cost over 
the same time interval: 

- - - 

Sufficiently near entails utilizing a "nearness criteria" which is satis - 
fied when 

> c  (3.4.5) AJ - 

where 0 < C < 1. 
determines an appropriate t l  and plays a major role in the general ef - 
ficiency and effectiveness of the overall optimization procedure. 

1, we start with t l  = to, 

It is the acceptance or rejection judgement here which - -  

To subdivide the time interval 5 t 
to, 

and if a reasonable reduction in cost A is obtained, w e  proceed with the 
main algorithm. 
the following manner: 

If a reasonable AJ has not been found, t l  is updated in 

- = . 5 ( t f + t  ) ( 3 . 4 . 6 )  - t O , r + l  0, r 

= -tf to  allow t 
01 0 0,1 

to b e  equal to  to = 0. where t 

tl must never be allowed to fall into an interval[t2, ti] , 
t2 E [to, tf 3 , where the nominal trajectory is the optimal trajectory 
over[t2, ti] , but not optimal over [to, tf J . 
6 x ( t )  - = O f o r t e [ t l ,  t f7 ,  s i n c e u * ( t ) = u ( t ) f o r t e C t 2 ,  - - ti]. No 

This would yield a - 
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reduction cost would ensue even though the trajectory is non-optimal 

from zero or 
q, during the 

over the whole t ime interval Et o, tf] Realizing that a [E(tf) ,  - 
= 0, w e  may record the time t = 

tf J 
at which a cZ(  - t ) ,  t] differs teff 

in practice becomes greater than a small  positive quantity, 
reverse  integration. Thus 

a[-(t), t ]  = o f o r  tf]. 

Equation ( 3.4.6 ) is then rewritten for  this particular case as: 

= .5 (teff + t ) ( 3.4.7 ) - t ~ , r + ~  0, r 
- 

eff’ where t = -t 
o s 0  

Now the interval [to, teff J rather than [to, tf 7 is subdivided 
to  find tle As the nominal trajectories become more nearly optimal, 
the interval where a [ X( t ), t 1 = 0 approaches the total time interval 
[to, tf 1 so  that in effect teff approaches to. On the optimal trajectory 
we then have 

- 

and teff = to. 

During the reverse integration process, the variables of integra- 

tion may become unbounded at some time tbJ tb E EtoJ teff] , In this 
case, the time interval [tb, teff 7 is subdivided to determine t according 1 
to  

= tb, Such a strategm a ids  in 
O J 1  

to insure that t teff where t = 2 tb  - 
0,o 

avoiding conjugate points or instabilities that frequently a r i se  in the back- 

ward  integration of the reverse matrix Riccati differential Eq. ( 3.2. 14 ). 
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Again, as the nominal trajectory approaches the optimal trajectory, 
tb approaches to. In the end tb = to so that the variables of the reverse 

integration are bounded over the total time interval of interest K t  0’ $1 
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CHAPTER IV 

FORMIJLATION OF THE STS REENTRY PROBLEM 

- 4, 1 Equations of Motion and Heating Relationships 

For the non-linear STS lifting-body reentry problem the equations 
of motion are as given by Eqs. (2.2.8) - (2.2.11): 

. 
(4.1.1) v cos y - - 

xr ( 1  + h/Re) 

h = v sin y 

where 
1 2  

q = z p v  

is the dynamic pressure,  

is the drag force, and 
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L y p v  1 2 S C L  

is the lift force in the vertical trajectory plane. The maximum coeffi- 
cient of lift and the corresponding maximum lift for  a particular angle 
of attack and Mach number are related to their vertical components, 
respectively, by: 

CL = CL cos t$ (4.1.8 1 
max 

L = Lmax cos (j ( 4.1.9 1 

where 
convenient vector notation, we have 

is the roll angle about the relative wind axis. Introducing a 

for the state vector, and 

for the control vector. The state equations are then written as: 

$ t )  = 



. 0 .  0 

where xr, v, , and h are as depicted in Eqs. ( 4 . 1 . 1  ) - (4 .1.4) .  

The convective heat rate relationship is given by Eq. (2 .2 .12  ): 

. 0.5 3. 15 
(4.1.13 1 l 7 J 6 O o  ( &  ) ( 

26,000 

o r  

. -0.5 0.5 v 3.15 gc = .61433466 ( R N )  ( P I P O )  (-1 
(4 .  1.14 1 1000 

2 for the nose stagnation area in units of BTU/ft /sec,  , where v = v 
the free s t ream velocity. Radiative heating is neglected for the veloci- 
ties of interest which are less than 30,000 fps. The total convective 
heat accumulation is simply the integral of the heat flux, denoted by: 

is co 

2 in units of BTU/ft . 
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4.2 The Quadratic Cost Functional 

The performance index o r  cost functional to  be minimized is 
given by Eq. (3.1.3): 

(4.2.1) U 

where the accumulated cost along €he trajectory is denoted by the quad- 
ratic 

T 

or 

L = L(6qc W i C  6 i C  $. ag's Wg's  6g's + 6q wq a,}+ qwqc xic 
2 

and the terminal cost is given as: 

5 2  



- 
F x(tf), tf L- 

o r  

0 
u 

wx r 

O wv 
0 0  

0 0  

0 

0 

W 

0 
Y 

- .  

( 4 . 2 . 4 )  

F = f (6xr Wxr 6xr + 6vWv6v + 6y W 6y + 6hW h 
Y 

The convective heat rate "penalty" is expressed as 

. - m, - qc ( 4.2.6 I t  

'The delta notation is adopted to allow for the possibility of maximum 
threshold values f o r  4, below which virtually no penalty is imposed. 
The expression 

I max 
if qc' 9, 

max 9, - qc 1 
0 otherwise 

would be utilized were it not for  the discontinuities in the second deriv- 
atives of rS& when used in the reverse differential equations. A s  Eq. 
( 4.2.6 ) stands, it is equivalent to employing a threshold value 

= 0. Similar comments apply to 6g1s and 6q in Eqs. (4 .2.7)  
rnax 

and (4.2.10). 

4c 7 
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where qc is the convective heat reate given by Eq. ( 4 . 1 . 1 3 ) .  Similarly 
the acceleration o r  load factor "penalty" is expressed as 

bg's = g's 

where the actual acceleration is given in g's by 

g's = ( L 2  + D 2 ) O o 5  
max 3 2 . 2  m 

o r  

( 4 . 2 . 8  1 

The dynamic pressure "penalty" is expressible as 

where q is the dynamic pressure given by Eq. ( 4. 1 . 5  ). 
cumulated convective heat "penalty" is expressed as 

The total ac- 

( 4 . 2 . 1 1 )  

where q is the total convective heat accumulated according to Eq. 

( 4. 1.15). 
C 

The terminal downrange inaccuracy "penalty" is given by 

6xr - - xr - x 7 
r desired ( 4 . 2 . 1 2 )  

where xr is the downrange travelled and xr 
desired, 
tive &xr undershoot, Similarly 

desired is the downrange 
Note that positive 6xr denotes overshoot in range, and nega- 1 

& v = v - v  ( 4 . 2 . 1 3 )  1 desired 
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6 7  = Y  -?I (4.2.14) 
desired 

(4.2.15 1 
6h = - "I desired 

denote terminal e r r o r  "penalties" in velocity, flight path angie, and 
altitude,. respectively. The terminal state values desired are not neces - 
sarily single valued, as a deadband or range of terminal values may 
also be acceptable, and thus not penalized. 
for  the particular atmospheric reentry problem at hand, as the subse- 
quent powered cruise flight may commence from a specified range of 
initial conditions on the states. 

This is a very useful notion 

The penalties a r e  scaled by the weighting factors Wqc, Wg's, 
Their values a r e  essentially the Wg, Wqc, Wxr, Wv, W , and Wh. 

inverses squared of the acceptable tolerance o r  variance in each quan- 
Y 

t ity : 

w% 

Wg's  

w 
*r 

wV 

1 =z 
r 

1 =z #.. 

(4.2.16 1 

(42. 17 

(4.2.18) 

(4.2.19) 

(4.2.20) 

. 
( 4.2.2 1 ) 

U 
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1 

Y 
wy = 7 

Q 

1 

ffh 
wh = 

However, any of these may be scaled by a 

( 4.2.22)  

4.2.23 1 

multiplicative constant to 
alter the relative weigkitings so  that large tolerances are weighted less 
heavily and small  tolerances weighted more heavily, o r  they may even 
be time dependent or varying with some other variable. 
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4.3 The Reverse Differential Equations -- - 
The reverse differential equations to be integrated backwards 

from the terminal time tf a r e  a s  given by Eqs. ( 3.2.12 ) - ( 3.2.14): 

-a = H - H  E ( t ) ,  G ( t ) ,  Jx, ( 4.3.1) c- - - 

-- 
where all te rms  a r e  evaluated at L x ( t  ), - u* ( t ) ,  t] unless otherwise 
indicated. 
time derivatives of the variables of the backward integrations. 

- 
The left hand sides of Eqs. (4.3.1) - ( 4.3.3 ) a r e  the total 

In otder to see how some of the terms on the right hand side ap- 
pear in  this particular problem, we write the Hamiltonian as defined in 
Eq. (3.1. 14): 

1 aJo f x(t), - u(t), t , t i =  L [ x o ,  - g t ) ,  t 1';; -c- aJO 

a x  - - 
H ~ ( t ) ,  - u ( t ) ,  - 

( 4.3.4) 

I 

where L is given by Eq. (4.2.3) and f by Eq. ( 4. 1.12). f is obtained 
by differentiating Eq. ( 4.1.12 ) with respect to  the state vector of Eq. 
( 4.1. 10 ), while f 

of Eq. (4.1.11 1. Xxplicit expressions a r e  given in Appendix C .  

- -X 

is the partial of - f with respect to the control vector 
-U 

From. Eq. (4.3.4) we assume that Jx is the classical Lagrange 
multiplier influence function of the cost funcxional with respect to vari- 
ations in the state vector to render 
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or,taking the Jx out of the differentiation, - 
Hx = L x + J  f x -x - - - -  

Similarly 

= L  + x x  -- f 

- -  

4 . 3 . 5  1 

( 4 . 3 . 6  ) 

( 4.3.7 ) 

where the bracketted te rm is depicted as such in order to avoid third 
order tensor notation. 
Appendix C. In an analogous fashion, we may express 

These quantities a r e  further expounded in 

+ 
f -- -- 

Jx -a, - -  

( 4 . 3 . 9 )  

and 
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f 
--xcy - 1 (4.3.10) 

A detailed derivation of these is given in Appendix C. 

The partials of the accrued cost functional L required in Eqs. 
( 4.3.5 ) - ( 4 . 3 . 1 0  ) are given as follows. 
inEq. ( 4 . 2 . 2 )  and ( 4 . 2 . 3 ) :  

Recall the expression for  L 

(4.3.11) 

1 

L =  
X - 

Taking the desired partial derivatives w e  find that 
m 

r 0 

=I 0 

T I L 



(4.3.14) 

(4. 3.16) 

These are stated explicitly in Appendix C along with expressions fo r  
the partials of the delta terms,  6 ( . . . ) and 6 (9, ). 

C 1 .  

Terminal boundary conditions f o r  the reverse differential Eqs. 
(4.3.1) - (4.3.3) a reg ivenbyEqs .  (3.2.15) - (3 .2.17):  

a ( t f )  = 0 (4.3.17) 

(4.3.18 I 

(4.3.19) 

Recalling the form of the terminal cost functional in Eq. (4.2.5): 



w e  take the desired partial derivatives required in Eqs. (4.3. 18 ) - 
(4.3.19): 

F =  
X 

and 

T 

T 

( 4.3.21 ) 

tf 

Further explication of these boundary conditions may be found in 
Appendix C. 

61 





CHAPTER V 

COMPUTATIONAL PROCEDURE 

5.1 The Main Algorithm - 
To solve an optimal control problem such as the non-linear 

lifting-body atmospheric reentry one by the new differential dynamic 
programming approach, an initial nominal control history U ( t ), 
t F lIto. tf 1 , must be available, either from a previous run or from 
an estimation or initial guess. Integrating the state Eq. (4.1.12 ) fo r -  
ward from the initial conditions at to, and employing the nominal con- 
t ro l  history E (  t ), a nominal state history is generated, x( t ), along 
with other desired quantities and the total cost. Since an initial esti- 

- 

- - 

mate of the terminal time is also required in this formulation, it may 
be updated at this point in the algorithm. In this way, it is not incor- 
porated directly into the procedure, but left as a variable parameter 
to be updated o r  changed depending on the needs and requirements of 
the optimization procedure. If the terminal time is increased, the 
state vector may be extended by maintaining the control vector of the 
old terminal time constant between the old terminal time and the up- 
dated terminal time. F o r  a decrease in terminal time, a mere  trun- 
cation is all that is required. There is a r n e t h ~ d ~ - ~  which incorporates 
more directly the terminal time updating procedure, but entails in- 
creasing the dimension of the problem, and thus increasing the compu- 
tational burden as well. 

The reverse differential Eqs. (4 .3 .1  ) ' -  (4 .3.3)  a r e  then in- 
tegrated backwards from the boundary conditions of Eqs. (4.3.17 ) - 
(4.3.19) to the initial time to. It is during this reverse integration 
process that the Hamiltonian is minimized in the control space to 
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determine - u* ( t  ). 
during the backward integration, and the time teff is recorded at which 
a X( t ) ,  t J differs significantly f rom zero, or in practice when 
la t - :( t ) ,  t]1 exceeds a small positive constant, 'I, The variables of 
the reverse integrations are also closely monitored, and the time tb is 
recorded when the backward integration goes unstable and becomes un- 
bounded, where in  general, if tb exists, to 

The optimal and nominal cost difference is monitored 

tb C teff tf. 

The new step size adjustment method then determines a new im- 
proved nominal trajectory provided it exists and can be found according 
to  the control of Eq. (3.2.19): 

(5. 1. 1)  

A time tl, tl  B 
nominal is employed for t c E to, tl 3 while an improved optimal is valid 

over tlS tf 1 . tl  is the earliest time at which the actual improvement 
in the cost functional is sufficiently near the predicted cost improvement. 
This is expoun6ed in Eqs. (3 .4 .3)  - (3.4.5). t l  is determined through 
Eqs. (3.4.6),  (3.4.7) and (3.4.9). 

to, teff 1 or t l  B E tb, teff 1 is chosen, where the old 

If a new improved nominal trajectory cannot be found, the new 
step size adjustment method stops the computational algorithm. 
new nominal trajectory can be determined, the reverse differential Eqs. 
( 4 . 3 . 1  ) - ( 4.3.3 ) are integrated backwards again, and the procedure 
continues until either an optimal trajectory has been determined to some 
specified tolerance, or until improvement in the nominal trajectory is 
no longer attainable. 
of F i g .  5.1. 1. 

If a 

The main algorithm is depicted in the flow diagram 
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- x (to) 

i I 

integrate reverse 
L differential equations 

minimize H with respect to u( t )  
to obtain - u~'' (t) 

- 
.a. 

I Note t = teff when I a [g(t>,  t] 1 >q 

Note t = tb when reverse integration 

step size adjustment method 

improveG nornl-ial 
is unattainable 

Figure 5.1.1 Main Algorithm 
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5.2 The New Step Size Adjustment Method 

To determine a new improved nominal 

-- - 

trajectory, the step size 
adjustment routine obtains f rom the main algorithm the time teff at 
which the magnitude of a [ - E( t ) ,  t 7 exceeds a small  positive constant, 

q. The optimal trajectory is specified when teff becomes less than or 
equal to the initial time to. Otherwise the constant c of Eq. (3.4.5) is 
initially set to 0.5. A tl  is found according to either Eq. ( 3.4.7 ) o r  

such that an application of the nominal control, Z( t ), over [ t 
and of the new improved optimal control, u ( t  ) = u* ( t  ) + bu ( t  ), over 

tl, tf ] leads to a predicted cost improvement sufficiently near the 

actual cost improvement according to Eq. ( 3.4.5). When this condition 
is satisfied, control is transferred back to the main algorithm which 
proceeds with the next step. Otherwise tl is tested to see if it is be- 
tween to and teff. If it is, tl  is updated through Eqs. (3.4.7) or (3.4.9) 
and the nearness cri teria of Eq. (3.4. 5 )  is tested again. If tl is not 
inside the interval Eto,  teff 2 , c is set to zero and t l  is again sought 

over [to, teff 7 or [ tb, teff 7 to satisfy Eq. (3.4.5 ). If c is already 
zero, the step size adjustment method halts the computation, as no 
further improvement of the nominal trajectory can be obtained. 

3.4.9 1 over the time interval 1 to, teff I or i tb, teff 7 , respectively, 

0’ tl  1 - 
- - - 

It is to be noted that t l  is actually tested for  inclusion in the in- 
to, teff - dt ] , where dt is the length of a time step, rather terval 

than in the interval 1 to, teff 7 . This is to preclude t l  from ever being 
updated into the interval r - teff, tf 7 over which intervalla 1- - -  x ( t ) ,  t 31 
1: and optimality is satisfied, as described in Section 3.4. Figure 5.2.1 
exhibits a flow diagram of such a new step size adjustment method. 
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5-2 5 . 3  A Computational Device for  Determining u* - ( t  ) 

The new control to be applied is stated from Eq. ( 3 . 2 . 1 9 ) :  . 

In non-linear examples, it may be plausible for the second term on the 
right hand side of Eq. ( 5 . 3 . 1  ) to  be large enough to  invalidate the local 
expansion in the control variables. However, dx - ( t  ) alone mag still be 
sufficiently small such that the .following expansion remains justified: 

This being the case, another method may be utilized for  purposes 
of determining the new optimal control u - ( t ) .  
desired bu - ( t  ) referenced about - u:g ( t  ), u - ( t ) can be gotten directly by 
minimizing: 

Rather than seeking the 

with respect to u - ( t )  either analytically o r  numerically. 
would also increase the rad ius  of convergence of the algorithm. 

Such a technique 

In a similar fashion, - u* ( t  ) can be determined by setting bx - ( t  ) 
equal to  zero. 
reverse differential equations. 

This would occur during the backward integration of the 
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CHAPTER VI 

, RESULTS - 

- 6.1 On The Formulation of the Algorithm 

The reverse differential equations for Jx require a nonsingular 
matrix. For the instances when it does beZEme singular, it may 

beFeplaced by some predetermined matrix. 
lized in the algorithm of this thesis, especially prevalent in the cases 
where a constant angle of attack is maintained. During the time steps 
where HUU does become singular, the control vector consisting of roll 
angle, $:and angle of attack, a, is reduced to  a scalar  control variable, 

4 .  The HUU matrix is accordingly replaced by the 4-component, H 
or in otherwords, by the ( 1, 1 ) component of the original HU matrix. 
Effectively, the influence of Q on the Hamiltonian is ignoredauring this 
time interval, and only the effect of 4 is retained, much more represen- 
tative than replacing the whole matrix by a predetermined value. 
only when H as opposed to  
four constant values for the HUU matrix. A previous value of H 
tried first, provided it is non-zero. Only if this is zero is a predeter- 
mined scalar value for  H utilized. For these cases, the dimensions 
of HUx and f 

HU u 
A t ruer  alternative is uti- 

$4 ' 

It is 
vanishes that a value is substituted for  H 

44 44' 
is 

44 

44 
are also changed accordingly. 

-U -- - 
The range values for 4 and Q are bounded, and although an algor- 

ithm does exist f o r  control inequality constrained optimization problems 5-2 , 
a more convenient formulation circumvents the additional computational 
burdens which it entails. As the data is introduced in the form of a finite 
data point table, the values assumed outside of the range of interest of 
the given table a r e  irrelevant and may take on any value. If we hypothe- 
size that 'In0 significant benefits in cost" can be accrued outside of this 
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range of interest, then by testing and sampling in  this region only, we 
a r e  effectively sampling the entire control space, and thus essentially 
have a simpler unconstrained control formulation. Herein lies an ad- 
vantage of not having the data as empirical functions of the control 
variables, and the obvious savings in the dimensionality of the formula- 
tion and computation time manifests itself. Another way of viewing this 
is to realize that only the controls in  this region of interest a r e  desirable 
o r  acceptable. To ensure that the controls do fall into this specific range 
of values, large penalties may D e  imposed on excursions outside of this 
region. A much simpler approach excludes the undesirable control space 
from ever being sampled at all, f o r  it would incur such heavy penalties 
as to be rejected anyway. This "foreknowledge" leads to considerable 
savings in time during the search of the control space. 

The lift and drag coefficient data a re  functions of both Mach number 
and angle of attack. 
coefficients and their first and second derivatives was first attempted 
using linear interpolation in each of two directions, and secondly by means 
of independent four -point binomial local fit along each dimension. When 
both were found to be inadequate, due to the accuracy requirements for  
the first and second derivatives with respect to both Mach number and 
angle of attack, plus a c ross  derivative, a Newton third order f i t  was 
utilized and found to be satisfactory, Since the study w a s  primarily an 
initial analysis of the c. g. trajectory, functional dependence of CL and 
CD on only angle of attack (and a hypersonic Mach number) is deemed 
acceptable. 
fairly constant until the lower Mach numbers a r e  attained, At these lower 
Mach numbers, however, the changes in these aerodynamic coefficients 
are incapable of altering the reentry trajectory to any great extent, thus 
validating the engineering assumption fo r  such an initial trajectory analy- 
sis. For qualitative comparisons with the Apollo reentries, a t r im angle 
of attack of 60' may be maintained throughout the entire entry, resulting 
in a constant L/D value of 0.521. In this  simplified case, C 
are simply constant values selected from the data table. 

The two-dimensional search for these aerodynamic 

This is because the aerodynamic characteristics remain 

and CD L 
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. 

The basic formulation is fo r  a continuous system, and as a 
digital computer requires a discrete sampled version of the continuous 
histories of the variables , there ar ise  problems of interpolation of values 
and synchronization of values held constant over finite time intervals. 
This is further complicated by the fact that the Runge-Kutta integration 
routine contains four steps of unequal duration within the overall integ- 
ration time step. 
procedure w a s  found to be the following. At every full time step, store 
the sampled state variables from the forward integration of the state 
equations. These w e r e  retrieved at the beginning of each reverse inter- 
gration step, and held constant throughout the entire step time, Within 
the reverse integration step, new controls u* - were determined utilizing 
current values of the reverse variables of integration. On the forward 
integration to determine the new updated nominal control, the values for 
the reverse variables of integration were retrieved at the s tar t  of each 
full forward integration step and held constant €or the remainder of that 
time step. Within the individual forward integration steps, current 
values of the states were employed to update the control. 
t ruer  representations of the actual control were rendered, leading to 
more accurate representations of the sensitive reverse variables of in- ' 
tegration. 
in the main program of the optimization procedure listed in Appendix F. 

The most feasible interpolation and synchronization 

In both cases, 

The interpolation and synchronization scheme is contained 
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6.2 Numerical Results - 
The differential dynamic programming formulation for optimiz - 

ing atmospheric reentry trajectories w a s  programmed in the pseudo- 
language MAC fo r  implementation on the IBM 360/755. In MAC, all 
values used in computation are stored as double-precision floating-point 
numbers occupying double words of eight byte or sixty-four bit 'length. 
This is equivalent to an accuracy of 15. 9 - 16.8 decimal digits, o r  in 
decimal notation, the range of a double-precision floating-point number 
lies between and loT6. An introductory description of MAC ap- 
pears in Appendix E. 
subroutines employed by the optimization routine appear in Appendix F. 

Listings and explanations of the programs and 

Due to the existence of the nonlinear term in the matrix Riccati 
reverse differential Eq. (4,3.3), instability during the backward integ- 
ration is defined as when the magnitude of any component of J exceeds 

Any Jxx component exceeding an absolute value of IO3'$ set  to 
'3c 

loa5 with the-Zppropriate sign, in order to prevent an overflow abort 
and to allow the proper completion of the integration fo r  that time step, 
The same magnitude bound on the components of HUU is also implemen- 
ted, even though magnitude violations in the absoluTFvalues of the 
components of Huu  do not directly cause an instability in the manner de- 
fined above for tEG- Jx components. 

-- 
The atmospheric reentry tra j ectories were integrated forward 

from the following set of initial conditions: 

x r ( t o )  = 0 n . m .  (6.2.1) 

v(t , )  = 26,000 fps  (6.2.2) 

? ( t o )  = -1.5 deg. (6.2.3) 

h ( t O )  = 400,000 ft. (6.2.4) 

72 



. 
An exponentially varying atmospheric density model w a s  utilized, with 
a scale height, hs, of 28,500 ft. 

u-1 with altitude were extracted f rom the 1962 U. S. Standard Atmosphere . 
Full integration time steps w e r e  of 1 second duration, both in the forward 
and reverse directions. Ordinarily the forward integration of the state 
equations does not require such a small  time step. However the need 
of the very sensitive reverse integrations to employ state variable values 
of better accuracy than perhaps interpolated values deemed it more 
feasible to use the same step size in both directions. Computation t ime 
and core memory allocations constituted the major obstacles preventing 
a desirable further decrease in the size of the reverse integration step. 
This is with respect to a total time interval of interest on the order of 
hundreds of seconds. In addition, a s  control constaints had not yet been 
included, the angle of attack, a, was constrained to  a 60° value f o r  all 
Mach numbers above 5. Since this w a s  most desirable from an aero- 
dynamical stability and control point of view, penalizing deviations from 
a 60° angle of attack above Mach 5 w a s  disregarded in favor of such a 
simpler fixed constraint approach. In each of the following cases, the 
total acceleration and dynamic pressure profiles were penalized. The 
threshold values at  which penalization occurs were both zero. Deviations 
from the desired terminal states were also penalized according to the 
various weighting schemes given. 

The speeds of sound and its variations 

The first case is shown in Figs. 6.2. la - 6.2. lh, and assumes 
zero weightings excepting the following: 

or 

or 

= 0.5 Ogfs 

= 4  
g's 

w 

= 1  
O X r  

w = 1  
r 73 
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tf = 1100 sec. 

q = 2.0 ( 6 . 2 . 1 0 )  

with a desired down-range of 2700 n. m. Fig. 6 . 2 .  la indicates the de-  

crease in cost with every iteration. It also gives a down-range terminal 
miss e r r o r  history with iteration number. Figure 6 . 2 .  lb shows the 
variations of both teff and tb  with iteration number. Note that the insta- 
bility of the reverse differential matrix Riccati Eq. ( 4 . 3 . 3  ) occuring on 
the initial iteration at t = 212 sec. is eliminated in the iterations there- 
acter. Figures 6 . 2 .  IC and 6 . 2 .  Id depict the control histories for angle 
of attack and roll angle, respectively. The initial nominal and the final 
optimal control histories a r e  shown f o r  both control variables. Figure 
6 . 2 .  l e  shows.the magnitude of the "a" history on the last optimizing 
iteration, when its absolute value never exceeds q on any portion of the 
time interval of interest. On preceeding iterations, teff is determined 
by the time at which la1 first exceeds r), and on subsequent iterations, 
more and more of the I a I history falls below the la 1 = 7 value. F o r  the 
continuous case, la1 should identically vanish, fo r  it is a measure of how 
close the nominal control is to the optimal control, a s  indicated in Eq. 
(4.3.1).  However, where finite size time steps a r e  employed, a non- 
zero tolerance value of rl is utilized. The values of r )  employed in these 
cases a r e  rather large, due to  the long time step durations and the lengthy 
overall time interval of interest. In this first case, the final /a I history 
falls wel l  below the rl value. Figures 6 . 2 .  If - 6 . 2 .  lg  depict initial and 
final optimal acceleration and dynamic pressure histories. Here dynamic 
pressure increased markedly and is essentially irrelevant to the first 
case, f o r  W = 0. Note the decrease in g l s  after t = 820 sec. , for all 
accelerations above zero were penalized, 
celeration profiles a r e  due to the finite jumps in the angle of attack history. 
Optimal state variable histories are finally shown in Fig. 6 . 2 .  lh. 

q 
The kinks or jumps in the ac- 
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In an effort to  eliminate the instability point, the time interval 
of interest w a s  shortened, leading to a new se t  of initial conditions: 

xr(to) = 1699.4 n. m. (6.2.11) 

v(t , )  = 20,736.13 fps (6.2.12) 

y (to) = -1.11203 deg. (6.2.13) 

h ( t O )  = 300,061.4 ft. (6.2.14) 

tf = 657 sec. (6.2.15) 

These values were extracted from an open loop trajectory wi th  the ori-  
ginal initial conditions of Eqs. ( 6 . 2 .  1 ) - ( 6 .2 .4  ), and maintaining 
constant control histories of 6 = Oo and a = 60° down to about 300,000 ft. 
in altitude, thus producing an essentially "equivalent" set of initial 
boundary conditions. 
shortening the total time interval of interest. 

The following two cases show the effectiveness of 

Figures 6.2.2a - 6.2.2h present a case identical to the first ex- 
cept fo r  the following differences: 

(7 = 100 4 

or wq = . 0001 

w = o  
g's  

(6.2.16) 

(6.2.17) 

(6.2.18) 

rl = 2.5 (6.2.19) 

The new initial conditions for  the shortened trajectory a r e  employed. 
Now dynamic pressure is penalized, while the acceleration history is 
essentially ignored. Figure 6.2.2a shows again the decrease in cost 
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with every iteration, while Fig. 6.2.2b evidences the complete elimin- 

ation of an instability point, and thus tb = 0 at every iteration. Figure 
6 . 2 . 2 ~  and 6.2.2d indicate the initial nominal and final optimal control 
histories, andFig. 6.2.2e gives the la\ variation with time. In Fig. 
6,2.2f,  larger  accelerations for  longer periods of time are allowed than 
in Fig .  6.2. If ,  since the gravity profile is now given zero weighting. 
Comparing Fig. 6.2.2g with 6 .2 .  lg, a cost improvement in dynamic 
pressure is observed, as was intended by the inclusion of the weighting 
factor, W 
namic pressure of the initial nominal history as compared with the final 
optimal history, and hence an increase in the dynamic pressure cost 
term, is more than offset by the cost improvement in attainment of the 
terminal desired down range, which w a s  more heavily weighted in Eq. 
( 6.2.8 ). 

6.2.2a as a function of iteration number.' Thus, the importance of the 
relative ratios of the weightings is brought out, and the consequences of 
a soft constraint quadratic penalty cost approach a r e  made known. 
The decrease in total cost at  every iteration is the determining factor in 
the optimization procedure, and the relative importances of the various 
penalties a r e  reflected by the magnitude and more importantly by the 
ratios of the various weighting factors. The optimal state histories are 
displayed in Fig. 6.2.2h. 

for this particular case. The undesirable increase in dy- 
q' 

This terminal miss distance in down-range is given in Fig. 

The following weighting ratios lead to the results depicted in 
Figs. 6.2.3a - 6.2.3h: 

wx = 0 
r 

w = 4  
g's  . 

w = .0001 

w = -01 
V 

Y 

Wh = .000001 
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The desired terminal state values a r e  a velocity between 100 and 1000 
fps, a flight path angle between -10 and 10 deg, , and an altitude between 
10,000 and 70,000 ft. These soft constraints a r e  much less  heavily 
weighted than the acceleration. Figure 6.2. 3a indicates the decrease in 
total cost at every iteration step. The overall decrease in terminal cost 
is also indicated, but is much smaller than the decreases in the accrued 
cost f o r  the acceleration profile. Figure 6.2.3b shows the successful 
elimination of the instability point in the reverse differential matrix 
Riccati equation. 
and final optimal control histories, and Fig. 6 . 2 . 3 e  the la I variation 
with time. Figures 6.2.3f and 6.2.3g reveal the acceleration and dynamic 
pressure profiles with the former  penalized and the latter essentially 
ignored. Final optimal state histories a r e  exhibited in Fig. 6.2.3h. 

Figure 6.2.  3c and 6.2.3d present the initial nominal 

The fourth case is the same as the third with the following changes: 

o r  

w = 1  
g ' s 

(6.2.26) 

and with the lowering of the desired terminal velocity upper bound from 
1000 fps to 900 fps. The results a r e  described in Figs. 6 .2 .4a  - 6.2.4h. 
The purpose of this case w a s  to lessen the importance of the acceleration 
penalty such that the desired terminal constrai2ts assumed a larger rela- 
tive weighting than previously. From a comparison of E'igs. 6.2.3a and 
6.2.4a, the terminal cost term at the final iteration step has been reduced 
from 14 to 6, due to improvements in lessening the terminal deviation in 
velocity and flight path angle. The terminal altitude was satisfactory in 
both cases. However, these terminal state weightings are still small  as 
compared to the weighting for the acceleration profile, and subsequently, 
not all of the terminal soft constraints were attained. 

The fifth case is the same as the previous, excepting the following: 
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w = .0001 
q 

(6.2.27) . 

( 6.2.28 1 

Also, the terminal time was  extended from 657 sec to 757 sec. This is 
equivalent to  a 1200 sec. trajectory from an initial altitude of 400,000 ft .  
Figures 6.2.5a - 6.2.5h depict these results. From Fig. 6.2.5a, the 
terminal cost is now reduced to 2,  with the only terminal violation being 
in the flight path angle, but now with a still smaller deviation from the 
desired values than in the previous two cases. Figures 6.2.5f and 6.2.5g 
show the acceleration and dynamic pressure profiles, respectively, where 
the former is essentially ignored while the latter is penalized. In this 
case, the optimal dynamic pressure history has been cost w i s e  reduced 
to where it has a maximum peak of only 91 lbs/ft  . This is to be com- 
pared with the dynamic pressure contours of Figs. 6.2.3g and 6.2.4g. 

2 

Figure 6.2.  5h reveals the optimal state variable histories. 

The sixth case differs from the previous in the following: 

W = .25 
g's 

(6 .2 .29)  

33 = 2.0 (6.2.31) 

It is essentially equivalent to  the third and fourth cases, but stressing 
the accrued penalty t e rm on the acceleration profile still less.  In addi- 
tion, ?I has been reduced to 2.0. Figures 6 .2 .6a  - 6.2.6h display the 
results. In Figure 6.2.6a,  the terminal cost is shown to be reduced to 
0.5, as compared with 14 and 6 in Figs. 6.2.3aand 6.2.4a, respectively. 
Barring the significance of a slight 6 fps  terminal velocity violation, the 
only significant deviation is in the terminal flight path angle, now smaller 
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than the terminal flight path angle deviations of the previous three cases. 
Thus, with an even smaller weighting on the accrued cost term than in 
the fourth case, the relative importance of the terminal performance is 
further accentuated. In addition, the shortened time interval has also 
. served to eliminate instabilities in the matrix Riccati equations as evi- 
denced by Fig. 6.2.6b. 

A case penalizing both the acceleration profile and the dynamic 
pressure history is given in Figs. 6.2. 7a - 6.2.7h, with the following 
changes from the previous situation: 

w = 1  
g's (6.2.33) 

w = .0001 
q (6.2.34) 

r) = 2.5 (6.2.35) 

With the same terminal state tolerance weightings as in the previous four 
cases, it is clear that terminal violations a re  less  important than reduc-  
tions in acceleration and dynamic pressure than in either of the fourth, 
fifth, or sixth cases where the terminal costs were 6, 2, and 0.5, r e -  
spectively. Here the final terminal cost is 9 at the seventh iteration as 
indicated in Fig. 6.2.7a. The shortened time interval did not eliminate 
the instability in the Riccati equation which appears on the first iteration 
at t = 313 sec. as evidenced in F'ig. 6.2.7b. However, the instability 
does not appear again in the subsequent iterations. Figures 6.2.7f  - 
6.2.7g reveal the maximum acceleration to  be 1.82 gls and a dynamic 

2 pressure peak of 78 lb/ft , both quite reasonable and due. to the weightings 
given them in Eqs. (6.2.33) and (6.2.34). Here,  terminal state accur- 
acy has been sacrificed in favor of acceptability in both the acceleration 
and dynamic pressure profiles. The optimal state histories are finally 
shown in Fig. 6.2.7h. 
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. 

In the fourth, fifth, and seventh cases, the shortened time inter- 
val did not totally eliminate the instability points. Upon further detailed 
examination of the non-linear system, along with the formulation and its 
corresponding new linear system based on converting the reverse differ- 
ential Eq. (4.3.3 ) into the form of the non-linear matrix Riccati equation, 
the controllability and observability in the deterministic sense of the 
formulation were questioned. 
trollable and deterministically observable, thus reverting the cause of 
the existence of the instabilities to probably the propagation of numerical 
e r ro r s  in the computations for integrating the very sensitive reverse 
differential equations. This coupled with the fact that practical con- 
straints precluded the utilization of a desirably smaller reverse  integra- 
tion t ime step is adequate cause for  the sometimes diverging behavior 
exhibited by some of the reverse variables of integration. The shortened 
total time interval served only to lessen the frequency of such occuren- 
ces, but was-  incapable of completely alleviating the problem. Another 
tact of rescaling the values of the state variables only served to worsen 
the situation. The determination of the controllability and observability 
of the system formulation is fully contained in Appendix D. 

The formulation w a s  found to  be both con- 
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CHAPTER VII 

CONCLUSIONS 

7.1 Summary - 
A new second order approach for  determining and optimizing 

nominal trajectories for  the reentry phase of the Space Transportation 
System utilizing the notion of differential dynamic programming has been 
formulated. A globally positive definite inverse second partial deriva- 
tive matrix, HUU, is no longer required. The problem of an unbounded 
Riccati equatioX?ts circumvented to a certain extent by the advent of a 
new.step size adjustment method to within the numerical accuracy of the 
computations involved in the reverse integration of the matrix Riccati 
equation. Rapid convergence of the non-linear problem is retarded only 
by the numerical inaccuracies of the computations. 

A new approach to confronting the problem of a singular - HUU 
matrix in the reverse differential equation, where  [ Huu 7 is required, 
is introduced. It affords a t ruer  representation ~y redui'ing the dimen- 
sion of the control vector s o  that HUU becomes a scalar, namely its (1, 1) 
component; and substituting this onZTalue rather than predetermined 
values for the entire matrix, Essentially, the effect of the temporarily 
discarded control variable on the Hamilton is ignored. In addition, an 
essentially control constrained problem has been converted into an un- 

constrained control problem through use of a finite point data table. By 
concluding that no additional benefits in cost can be gained outside of a 
certain control range of interest, a search within that range constitutes 
a search over the entire control space with respect to the overall cost 
functional o r  performance index. 
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Cases were run employing the general conditions and character- 
istics expected f o r  the reentry of the STS. 
ered appeared to originate f rom the numerical inaccuracies propagated 
through the integrations, and from the finite representation of a contin- 
uous system by sampled data at one second intervals. The lengthiness 
of the overall t ime interval of interest served to intensify the aggravating 
problem of numerical integration inaccuracy, especially fo r  the very 
sensitive reverse differential equations. 
the reverse  integration time step duration w a s  mainly precluded by the 
already overburdened requirements on computation time and computer 

The major problems encount- 

The desirability of decreasing 

core memory allocation. For well defined optimal control problems, 
optimum trajectories w e r e  established and their  corresponding proper 
control histories and influence functions w e r e  generated. 
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7.2 Conclusions - 
The novel approach of applying the notion OP differential dynamic 

programming to determining and optimizing atmospheric reentry tra- 
jectories is impressed. With a prudent choice of weighting factors and 
a reasonable initial estimate of the control histories, optimal solutions 
may be generated. Within a local convex region of the Hamiltonian in 
the control space, a magnitude of the ''atr variable less  than a tolerance, 
q, for all times of interest signifies that the local optimal solution has 
been determined. 
upon the accuracy of the aerodynamic model as reflected in the numerical 
values for  the lift and drag coefficients, and the exactness with which 
they and their derivatives are extracted from a finite aerodynamic data 

The validity of these optimal trajectories is dependent 

point collection. 

Each forward integration searching f o r  a feasible value f o r  t l  to 
determine a new optimized interval of time is essentially an open loop 
simulation o r  forward integration of the state equations, closed by the 

nearness criterion" of the actual cost improvement derived from each 
forward integration as compared with the predicted cost improvement. 
Here, man is eliminated from the closed loop optimization analysis, and 
the f laws and disadvantages of a simple acceptance and rejection criterion 
in the "nearness" test  a r e  made imminent. The overall efficiency and 
effectiveness of finding an appropriate optimized interval a r e  impaired. 
A perhaps more complicated Itnearness criterion" is required, possibly 
with "c" becoming smaller as the optimal solution is closer approached 
so that in the end, any improvement in cost is accepted. A final value 
for  "c" of zero is an indication of the numerical inaccuracies that must 

I 1  

be tolerated as the performance index improvements become smaller 
and smaller, A routine for  judging the acceptability of the nearness of 
la1 to c must not, however judicious it might appear, hamper the 11 I t  

timewise efficiency of the overall optimizing process. Obviously, a 
less complicated and demanding criterion should be employed during the 
initial iterations. 
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Inclusion of eight different performance criteria with a weight - 
ing pattern for penalization renders a very flexible algorithm for  
determining optimal trajectories for  a diversity of situations. 
care must be taken in selecting an appropriate set  of weighting factors. 
It is due to  the number and variety of parameters involved that a soft- 
constraint quadratic penalty cost functional was  adopted. A system may 
become over-constrained s o  that no solution exists that w i l l  satisfy all 
the desired conditions. A soft constraint approach merely al lows the 
system an additional freedom to violate the least important cost w i s e  
constraints, so as not to  impede the proper determination of an optimal 
solution. 

However, 
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7.3 Significance - 
Such an approach’has been to  afford a closed loop methodology 

in optimal nominal atmospheric reentry trajectory determination. Open 
loop guesswork is now eliminated in favor of a consistent framework 
from which to generate and examine control strategies. The variables 
of the reverse integrations a r e  the influence functions employed as the 
gains in the dosed loop perturbation guidance control law. Whereas ih 
the Apollo reentry logic the gains were generated from a first order 
adjoint method, the gains f o r  the STS reentry are generated from a 
second order differential dynamic programming procedure and based on 
an optimal nominal trajectory. 
inclusion of a pitch down transition to cruise maneuver which may render 

This importance is accentuated by the 

highly sensitive influence functions which in turn might requir-e higher 
order or cross  coupled terms in the closed loop control law. 
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7.4 Recommendations - 
A useful contribution to the overall effectiveness of such a dif- 

f erential dynamic programming approach would be to determine a 
synchronization and interpolation procedure to  facilitate lessening the 
inaccuracies encountered in the integrations of the reverse differential 
equations. This tact would be more feasible f rom a pragmatic point of 
view than merely decreasing the duration of the reverse integration time 

step. 

Another very useful contribution would be to effect a more pliable 
and reliable '?nearness test" for the acceptance and rejection of possible 
times for  tl. A very effective criteria would aid in reducing the compu- 
tation time required to determine an appropriate tl  on each iteration as 
we l l  as possibly decreasing the total number of iterations required by 
accepting as .much cost improvement per step as is feasibly possible. 
In addition, the determination of the proper tl  in the later iterations di- 
rectly affects how close and how quickly the optimal solution may be at- 
tained. 

A third useful addition would be the incorporation of a procedure 
to vary the terminal time. Although an extended algorithm does exist to  
this endJ-3, the added dimensionality of the formulation would entail much 
more burdensome computations. 

The ideas of Stengel'-', may be used to penalize destabilizing 
values of angle of attack during the transonic transition maneuvers. To 
obtain better accuracy during the later iterations, the weighting factors 
may be increased with iteration number. Another alternative currently 

classical boundary value iteration technique is utilized after differential 
dynamic programming no longer yields an improvement in cost. 

being investigated by Pu t is a hybrid formulation, where a more accurate 

'Member of the Apollo Space Guidance Analysis Division, MIT Draper 
Laboratory. 
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. 
In addition, operational considerations and control constraints, 

may be introduced into the optimization process, perhaps to render a 
control logic least sensitive and prone to e r ro r s  emanating from bad 
information. 
of aerodynamic coefficients and their derivatives f rom three dimensional 
finite data point tables. 

Lastly, improved methods are desirable in the extracting 
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APPENDIX A 

M O F  THE HAMILTON-JACOBI-BELLMAN 
PARTIAL DIFFERENTIAL EQUATION 

We write the Hamilton- Jacobi-Bellman partial differential 
equation (3.1.22) in te rms  of the nominal trajectory according to 
equations (3.1.17) - (3.1.18): 

Equation (A. 1) is exact, as no approximations have been introduced 
yet. 
ser ies  expansion in 6x(t) - about Z(t), - there follows: 

If the performance index is suf€iciently smooth to permit a power 

+ higher order terms 

If we rewrite the optimal cost according to equation (3.1.23) as 

- 
JO (z(t), t) = J (z(t), - t) + ao ( ~ ( t ) ,  t )  - 

(A. 2)  

(A. 3 )  
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where the controls a r e  specified by equations (3.1.24) - (3.1.25), 
equation (A. 2) becomes 

+ higher order terms 

Equation (A. 4) transforms equation (A. 1) into: 

- 
- - ?iJ - 2 {ao (z(t), t)} - &- [Jo] bx(t) X - - E(t) at at - 

- 1/2 bx(t)T ̂[Jo 1 6x(t) - +higher order terms at xx- X(t)  - 

bx(t) - + higher order terms) 
- n(t) - 

Confining the new perturbed trajectory to the neighborhood of the 
nominal trajectory ensures a small enough 6x(t) - so that higher 
order terms in 6x(t) - may be neglected. A sufficiently small 
6x(t) - further implies that a quadratic expansion is an adequate 
representation of the optimal performance index in the 
neighborhood of the nominal trajectory. Utilizing these 

(A. 4) 
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hypotheses, equation (A. 5) is reexpressed thusly: 

This is the form of equation (3.1.26). Note that the superscript o 
has been dropped for the reasons noted at the end of Section 3.1. 
Additional relations a r e  given for the sake of completeness: 

1 m 
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APPENDIX B 

AN ANALYTICAL DERIVATION O F  THE FORM O F  THE 
REVERSE DIFFERENTIAL EQUATIONS 

We take equation (3.1.26) or equivalently equation (A. 6): 

Setting 6x(t) - = 0, the right hand side of equation (B.l) becomes: 

Minimizing the expression of equation (B. 2)  according to the control 
of equation (3.2-1) gives 

Now reintroduce variations 6x(t) - about %t). - In order to maintain 
minimality d the right hand side of equation (B.l), we must also 
reintroduce 6u(t), but now referenced about - ul'(t) according to equation 
(3.2.5): 

-8. 

- 
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. 

and utilizing the definition of the Hamiltonian as given by equation 
(3.1.14). This is equation (3 .2 .2 ) .  
of equation (B. 4) about - %(t) and - u*"(t) according to equations (3 .  2 . 4 )  
and (3.2.5) leads to 

Expansion of the right hand side 
J. 

f .) 6x(t) + higher order terms} (B. 5) T 

.L 

where all quantities are evaluated at [Zt),  - - u*'*(t), t]. 
optimal linear feedback controller of the form stated in equation (3.2.6): 

W e  desire an 

where 8(t) is selected to maintain the minimality of equation (B. 5)  
To this end, we differentiate equation (B. 5)  with respect to 6u(t): - 

6(t) 6x(t) + (H + f  J )6x(t) +higher order te rms  = 0 (B.7)  - u x  -u x x  - -- - -- Hu + Huu -- - 
\I. 

with 'a l l  t e rms  evaluated a t  [Z(t), - - u-'*(t), t], This vanished because a 
properly chosen p(t) maintains the necessary condition of optimality 
as mentioned before. Since equation ( 3 . 2 . 3 )  states that Hu = 0 ,  and 
if 6x(t) - is sufficiently small, the coefficient of the first o d e r  t e rm in 
6x(t) - of equation (B. 7) may be equated to zero to  yield the expression 
for the optimal linear feedback controller as given by equation ( 3 . 2 . 8 ) :  

.. 

15 0 



.I, 

Here again all terms are evaluated at [Z(t), - - ul'(t), t]. If equation (B. 6) 

is substituted into equation (B.51, and we retain only those terms up 
to second order in bx(t), we  obtain: - 

Equation (B. 9) is merely the right hand side of equation (B. 4), 

allowing us  to equate the coefficients of like powers of 6x(t) - to obtain 
equations (3.2.9) - (3.2.11): 

- 
= H  ;JJ aa 

at  at - - - -  (B. 10) 

(B. 12) 

-1. - 
where all terms a re  evaluated at [F(t), u*'*(t), t]. 

are functions of the nominal trajectory, permitting the following full 
differential expr e s s ions : 

J, a, Jx, and Jxx - - -- 
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(B. 15) 

for sufficiently small 6x(t). - We also note that 

-a€ {J Wt), - t)} = L Wt), - c(t), t )  (B. 16) 

where use has been made of the formula for the differential of an 
integral with t a s  the lower limit of integration. Substituting equations 
(B. 13) - (B. 16) into equations (B. l O j  - (B. 12) yields the desired reverse 
differential equations (3.2.12) - (3.2.14) : 

= Hx + J (f - f (E(t), E(t), t ) )  x x -  - -  - - -- - Jx ( B. 18) 

(B. 19) 

4. 

where all quantities a re  evaluated at [Zjt), - - ul'(t), t] unless otherwise 
indicated. The dot notation indicates the total differential operation 
with respect to time. 
a r e  as given in equations (3.2.15) - (3.2.17), and a re  stated here for 
the sake of completeness: 

Boundary conditions for equations (B. 17) - (B. 19) 

(33.20) 

(B. 21) 
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APPENDIX C 

FORMULATION O F  THE REVERSE DIFFERENTIAL EQUATIONS 
AND THEIR TERMINAL BOUNDARY CONDITIONS 

The form of the Hamiltonian stated in equation (4.3.4) is 

1 Zit), u(.t), - 

Substitution of equations (4.1.1) - (4.1.4), o r  (4.1.12), and (4 .2.2)  into 
this expression yields 

T 

1 H = z  

64, 

6g's 

W t C  

0 

0 i 0 

0 0 

W g ' s  0 

0 wq 
0 0 

1 
m q  v cos y 

e 

L v sin y (C. 2) 
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where 

The partial differential of - -  f (x(t), u(t), t) of equation (4.1.12) 
with respect to the state vector given by equation (4.1.10) is expressed 
as: 

( 2 )  = o  
xr 

(C. 4) 

(6) = 0 (C. 8) 
xr 

. 2 V (v), = - g cos y +-cos y 
Re + 

(C. 10) 
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ti.), = 0 
r 

(C. 12) 

1 

+cos y----r;+-4Jcos 1 y 

R e +  v 
(C. 13) 

sin y + $ siny (C. 14) V - (3, - - R-+h 
e 

(h) = 0 
xr 

, 
(h)v = sin y 

(h$ = v cos y 

(C. 15) 

(C. 16) 

(C. 17) 

(C. 18) 

(C, 19) 

The partial differential of - -  f (x(t), - u(t), t) of equation (4.1.12) 
with respect to  the control vector in equation (4.1.11) is 

15 5 



where 

(Wq = 0 

. 
= 0 

The forms of the partial derivatives of the Hamiltonian wil l  
now be derived starting from its basic definition: 

(C. 20) 

H = L + J  f 
X -  (6 .29)  
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Thus 

(C. 30) 

L \ 

f T  

f Y  

-V 

T 

T 
fh 

H = L u +  J f  u - ( 5 - ) 2  

= L u + J f  - x-u 

- -  Jxfh 

(C. 31) 

(C.32) 
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+ - E;) 
U -a - 

J f  x-au I 

X - 

= L .  + ux 

5-a [:11"1 u 
(C. 33) 

The p a r t i a l s  of - f required by equations (C.31) (C.331, 
and (C.34) are now defined: 

15 8 



f 

where 

(C. 35) 

(Xr'xrv = o  

('r'vv = o  

. I (ir)yv = - sin y 
1 + h/R, 

(C. 37) 

(C. 38) 

(C. 39) 

(C. 40) 

(G)x = o  
r 

(C. 41) 

15 9 



(C. 43) 

(C. 47) 

. 
= o  (h)x v r 

Mvv = 0 

(C. 49) 

(C. 50)  
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where 

1 
m i T q  = - sin y (xr )v y 

(C. 51) 

(C. 52) 

(C. 54) 

(C. 55) 

. 
(C. 56) 1 = - vcos  y l + h / I T  

(Xr)y y e 

Re = vsiny 
('r'hy (Re + hI2 

(C. 57) 

(C. 58) 

(C. 59) 

16 1 



* 
2 

(C. 60) 
= gsiny-&-siny V 

e 

(C. 61) 

* V 
(C. 64) 

- ( Y I y y  - -- cos y ++os y 
e 

(hIvy = cos y 
, 

= - v s i n y  (h)Y Y 

(C. 65) 

(C. 6 6 )  

(C. 67) 

(C. 68) 
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. 

where 

“r ’xrh = o  

Re 
(Re + M3 

(+& = 2 v cos y 

0 

= o  (v)x h r 

(C. 70) 

(C. 71) 

cc. 73) 

(C. 74) 

(C. 75) 

(C. 76) 
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(C. 7 7 )  

(C. 7 8 )  

(C. 80)  

( C . 8 1 )  

( C .  8 2 )  

( C . 8 3 )  
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(C. 84)  

f =  
-U(3 - 

- 
' 0 .  

0 

0 - 

c 

0 

0 

0 - 

(C. 87) 

0 

0 

O l  

01 0 

0 0 (~~~ 

0 0 

(C. 8 8 )  

(C. 8 9 )  

where 
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(C.90)  

where 

( C . 9 6 )  

The p a r t i a l s  of the  accrued cos t  funct ional  L are now 
derived. W e  w r i t e  equation (4.3.11) : 

((2.97) 



Lx is given by equation (4.3.12) as - 
- 

0 

0 

. .  

From equation (4.3.13) I w e  proceed to obtain 
8 

- 
0 0 0 

I Lvv 0 Lvh 

0 0 0 

0 Lhh - Lhv 

LXX -- 

where 

T 

(C.98) 

(C* 99.) 

16 7 

(C.100) 



- (C.102) Lhv - 'vh 

From equation (4.3.14) w e  s ta te  

Following equation (4.3.15) w e  may write 

-- 

where 

(C.104) 

((2.105) 

16 8 



. 

99 
= Wg's(6g's) + 6g's Wg's (6g's) =49 9 

9 

9a 

L = (6g'sIa Wg's(6g's) 9a 
+ 6g's Wg's(6g's) 

9a Lao = L 

' k a  = wg's(6g's); + 6g's wg's(6g's)aa 

Equation (4.3.16) leads t o  

9v L 

=av 

where 

9 = (6g's)v Wg's (6g's) L9v 

v9 + 6g's Wg's(6g's) 

9 

h9 

= (6g's)h Wg's (6g's) L9h 

+ 6g's Wg's(6g's) 

Lav = ( 6 g W v  WgWGg's), 

+ 6g's wg's(6g's)va 

(6,106) 

(C.107) 

(C. 108) 

(C.109) 

(C. 110 1 

(C. 111) 

(C.112) 

(C. 113) 
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The partial derivatives of the de l ta  terms w i l l  now be 
given. S t a r t i n g  w i t h  equations ( 4 . 1 . 1 4 )  and ( 4 . 2 . 6 )  I 

(C. 115)  
max 

- .61433466 64, - 
% 

w e  see that  

(64c)v'= 3.15 aC/v (C.116) 

. (64Jw = ( 3 . 1 5 )  (2 .15 )qC/v2  (C.117) 

(C.118) 

(C.119) 

(C.120) 

The partials of 8Gc are i d e n t i c a l  to  those f o r  66, as 
given by equations (C.116)  - ( C . 1 2 0 ) .  
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Referring to equations (4.1.5) and (4.2.10) for the 
dynamic pressure penalty t e r m ,  

(C.121) 

the par t ia l  derivatives  are : 

(6q), = PV 

(W, = P 

(C. 122) 

(C.123) 

(C. 124) 

(C.125) 

((2.126) 

From the d e l t a  terms of the acceleration given by 
equations (4.2.7) and (4.2.9), 

(C.127) 

the par t ia l s  are as follows: 
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+ 
(cD2 + CL 7 5  

m a x  

+ &  

+ c  
‘D (‘D) v Lmax(CLmax)v 

(cD2 + CL 2 ) Q - 5  
m a x  

, 

(C.128) 

kD2 + CL ,),a5 
m a x  

+ (cD)2v * (CLmax)’ 
+ cLmax(cLmax)w V 

‘D (‘D) w 

(CD2 + CL 2 y - 5  
m a x  

(C. 129) 

(C. 130) 
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1 a2p v2 0.5 
(bg's)hh = T ah2 w/s ('D2 + 'L max ') 

c ~ ( ~ D ) h  + cL 
m a x  Pmax),  

2>0-5 

+%& 
(.D2 ' 'L max 

+ w q s  

+ c  
('D ('D) h Lmax (C.,,x,,)' 

(... + CL 9 1 . 5  
max 

'D('D)hh -t 'L rnax (CLmaxlhh + ('D); + 

CD2 + CL 2) 0.5 

max 

(C.131) 

+& 

(cD2 + c Lmax 2)0*5 

( C , ( c D ) ~  ' 'L max (". max ) ) t D ( ' D ) h  + cLmax(CLmai)h) 

max 
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‘D (‘D) vh + cLmax(..max) vh + ( C D ) v ( C D ) h  + p m a x ) , ( ‘ . . - ) ,  

(q + CL 9 0 . 5  
m a x  

m a x  cL 

- &  

CD2 + CL 2)o-5 

(C.maX (cL,ax jm 
(..2 + cL m a x  .> lo5 

m a x  

max 

( C . 1 3 2 )  

( C . 1 3 3 )  

( C . 1 3 4 )  

((2.135) 
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-9- w s  

+ 

( C . 1 3 6 )  

( C . 1 3 7 )  

+i& 

(CD(cD)V + cLmax(c.max)) 

CD2 + c 
'max 

(cL..x),(cLmax) V + CL,ax(CLmax) V$ 

0'5 
CD2 + CL ( m a x  

( C . 1 3 8 )  
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. 

F m a x )  a 
+ CL ‘D (‘D) a max 

@D2 ‘L max 

+ &  

(C.139) 

-3- w s  

t D 2  + ‘L max 

‘L max (% max ) ( C D ( C D ) h  i- CL,ax(CLmax)h) 

(‘D2 ‘L max 
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+ w s  4- 

(CD"D'h + 'L max ('L max ) )('D('D)a + 'L 

max 

(C.141) 

Terminal boundary condi t ions for  the reverse d i f f e r e n t i a l  
equations (4.3.1) - (4.3.3) are s t a t e d  i n  equations (4.3.17) - 
(4.3.19)t i n  Which 

and 

T 

tf 

0 0 0 
wx r 

0 0 0 wv 

0 0 W 0 Y 

0 

- 
0 0 'h 

(C.142) 

(C.143) 

tf 
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where 

f 

d e s i r e d  max a t  tf 
x - x  r 

I l d e s i r e d  max a t  tf 

i f  xr < xr 
- 

r 
xr ldes i red  min a t  tf ]des i r ed  min a t  tf 

0 otherwise 

(C.144) 

v - v  i f v > v  
] d e s i r e d  max a t  tf 

l d e s i r e d  min a t  tf 

]des i r ed  max a t  tf 

l d e s i r e d  min a t  tf 
v - v  i f v < v  

0 otherwise 

(C.145) 

- Y  i f y > y  
] d e s i r e d  max a t  tf 

]des i r ed  min at tf 

l d e s i r e d  max a t  tf 

l d e s i r e d  min a t  tf 
i f y < y  

0 o therwise  

(C. 146 ) 
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i f h > h  
ldesired max a t  tf 

]desired min a t  tf 

ldesired max a t  tf 

' hldesired min a t  tf 
if 

0 otherwise 

(C. 147)  

as given by equations (4 . -2 .12)  - (4.2.15). All terms i n  
equations ( C . 1 4 2 )  -- ((2.147) are evaluated a t  the terminal 
time, tf. 
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APPENDIX D 

CONTROLLABILITY AND OBSERVABILITY OF THE FORMULATION 

To examine the controllability and deterministic observability of 
the system formulation, the second partial reverse dif€erential 
Eq. (4.3.3), 

a m 

- (Hux +fUT Jx,) T (Huu) -1 “Hux +fuT Jxx) (D. 1) 

must be converted into the standard form for a matrix Riccati equation: 

= - S F - F T S + S G B  -1 G T S 

with an appropriate terminal boundary condition, 

Jx x s =  -- 

-1 T - -1 T 
-U GB G - fu Huu - -- - 

- A  (D. 2)‘ 

and where 

(D. 3) 

(D. 4) 

(D. 5)  

T -1 
A = Hxx -- - % x  -- Huu -- %x -- 
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The corresponding new time-varying linear system is described by the 
state equation 

e 

+ G(t) u (D. 7) -new -new 
X - - F(t)Enew 

The controllability of the formulation is signified by the positive 
definiteness of the following integral: 

where @ (7, to) is the new system transition matrix. 

-1 T Though GB G is not of maximum rank, the integrand of Eq. 
(D. 8) may integrate to a non-singular term over a finite amount of time 
to yield a controllable system. 

\ 
Similiarly, the observability of the formulation is determined by 

the positive definiteness of 

T -1 where H A 
a diagonal positive definite matrix which yields a positive definite 
integral in Eq. (D. 9), thus verifying the complete observability in the 
deterministic sense of the system formulation. 

H is the weighting matrix on the state. T h i s  we know to be 
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APPENDIX E 

MAC'- 360 

MAC is a pseudo-language designed and implemented at the 
Draper Laboratory of the Massachusetts Institute of Technology to 
simplify the task of programmer communication with the computer 
of the mathematics of space mechanics 
language with standard algebraic notation into a form which approximates 
the scientist's or  engineer's own language. 

u- 2 . MAC combines the English 

The basic MAC feature is a three-card-per-line format, 
corresponding to the three-levels-per-line of ordinary algebraic 
notation. For example, the expression 

2 de % = b k c  

would appear in MAC as:  

E 2 D E  
M A = B  C 
S K K 

Further, the incorporation of a bar, ' I - "  , on the E-line over a variable 
name denotes a vector, while a star,  "::", over a variable would define 
a matrix, both being of an appropriate dimension a s  defined at the 
beginning of each program. 

Another feature of MAC is the DIFEQ statement, which enables 
an integration operation in the numerical solution of differential 
equations. An approximate solution to these is accomplished by a 
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four step Runge -Kutta routine. Logical adjacency of variables separated 
by a space o r  some other appropriate delimiter indicates a multiplication, 
while addition, subtraction, and division are simply denoted by +, -, 
and /. 

This brief introduction to MAC should enable one to follow the 
logic of the programs as given in Appendix F. For  a more detailed 
explanation, refer to the " U s e r s  Guide to MAC - 360" as cited in the 
bibliography, 
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APPENDIX F 

OPTIMIZATION ALGORITHNI COMPUTER PROGRAM LISTINGS 
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